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Abstract. The probability P(n, t ,  , t 2 )  of counting n electrons in the time interval from t ,  
to t ,  is derived from a quantum-electrodynamic treatment of an electron multiplier. Al- 
though the expressions obtained are similar to those obtained by Glauber for photons 
there remain fundamental differences. The interest of these results for existing and proposed 
experiments on electron beams is outlined. 

1. Introduction 

The concepts of photon counting statistics and photon coherence have aroused much 
theoretical and experimental interest in recent years, with the demonstration of the 
Hanbury Brown-Twiss effect (Hanbury Brown and Twiss 1957a,b), the advent of 
sophisticated photon counting experiments (Troup and Lyons 1971, Arecchi et a1 1966, 
Kelly and Blake 1971, 1972, Jakeman et al 1971), and particularly with the tremendous 
clarification and increased understanding achieved by a quantum-mechanical treatment 
of optical coherence (Glauber 1964, Kelly and Kleiner 1964). For reviews of these 
developments see Mandel and Wolf (1965), Klauder and Sudarshan (1968), and Troup 
(1972). Unfortunately these concepts have not been applied to electron beams except 
in a loose way based on rough analogies with classical optics (Hibi and Takahashi 1969, 
Klemperer 1972, Heidenreich 1964) and the aim of this paper is to treat electron counting 
statistics and coherence from the viewpoint of quantum electrodynamics, this being all 
the more necessary because of basic differences between the mechanisms of photon and 
electron detection. In spite of these differences however, it will be shown that the resulting 
expressions for the statistics of electron counting are very similar to those for the photon 
case, but with several important restrictions. The fact that electron field operators obey 
anticommutation rules plays an important role, forbidding the existence of non-trivial, 
fully coherent states (Bowring et a1 1971), and preventing the use of a theorem which is 
very powerful in quantum optics : the optical equivalence theorem. 

2. Calculation of the detection probability 

2.1. The detection process 

The choice of a detection process for electrons is (as in the photon case) not unique, but 
perhaps the most common detector which is capable of resolving individual electrons of 
low-medium energy is the electron multiplier. Unlike photon detection however, it is 
not evident that electron detection in the electron multiplier can be treated rigorously 
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using a dipole approximation, and moreover the detection system involves the same 
field as the detected beam. The detection process is not the simple absorption diagram of 
the photoelectric effect but is probably to lowest order the second-order diagram of 
bound Merller scattering between electrons in the beam and electrons in the detector. 
These are in general in the external field of the nuclei or perhaps as a further approxima- 
tion in their own self-consistent field. The term in the scattering operator for this diagram 
is 

SBMS = j d3r, d3r,[d dt ,  'dt, 1 ~ ~ ( x 1 ) ~ ~ ( x 2 ) $ ~ ( x 1 ) $ ~ ( x 2 )  
0 i.j.k.1 

lJ ,V 

l I ~ k ' I X ( o I { A ; ( x l ) A , + ( x , ) }  + l o >  (1) 

where x i  stands for the four-vector (vi ,  ti). 
In order to  simplify the calculations it is necessary to assume the distinguishability or 

separateness of (i) the incoming beam (B), (ii) the electrons in the detector (P), (iii) the 
scattered electrons (S) and (iv) the excited electrons (emitted from the cathode) (E), that is, 
it is necessary to assume that the one-particle eigenstates of the external field plus electron 
field hamiltonian (solutions of the Dirac equation) can be divided into these four types. 
Expanding the electron field operator in terms of these one-particle functions @;(r) with 
energy eigenvalues hw(cr) gives : 

wherej is the spinor index and cy is the annihilation operator of thejth spinor component 
of an electron in the state corresponding to (D:(r) and 

$f(B*D,S,E) = C cq@q(r) exp(iw(a)t). 
QEB,D.S,E 

Substituting (2) into (1) yields 256 terms in the expansion for SBMs. However, by the 
choice of the regions in state space (B, D, S and E) and the assumption that incident, 
detector, scattered and excited electron states lie predominantly in their assigned 
regions, this number reduces to  two. If the state space cannot be divided into such 
regions, then the calculation will be enormously complicated by interference effects, 
between beam and scattered electrons for example. 

2.2. The first-order detection probability 

Let { I C ) }  be the set of states of the electron field (in the region E) which are considered as 
having been detected or excited in some sense. These will be the states in which an 
electron is travelling from the cathode to the second electrode in the cascade. Treating 
only this first step in the cascade quantum mechanically, the probability of detecting an 
electron in a small time interval, At, is proportional to, to first order, 

The initial state li) is taken to be a product ofdetector and beam states (appropriately 
antisymmetrized), that is, they are assumed to be independent or uncorrelated at t = 0. 
This will be realized if the two have not interacted at this time or if there is some inter- 
action within the detector which causes any correlation which might have arisen to be 
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destroyed in a relaxation process. Let the initial state of the beam be denoted 1") and 
that of the detector I+o), with the scattered and excited regions in their ground states 

Substituting the appropriate terms of (1) into (3), rearranging the variables of integra- 
tion and factorizing into expectations in the four regions B, D, S, E, yields the result 
below. (Antisymmetrization of the initial state may be ignored, as rearrangement of the 
order of the states necessitates the same rearrangement of operators and thus an odd 
permutation leads to no resultant change in sign.) 

\OS>? lo,>. 

P(l)(Ar) = ssss d4x1 d4x2 d4x3 d4x4(Y'($r(B)(x2)$jt(B)(x4)(Y) 
j i '  
ii' 

Using these notations 

P ) ( A r )  = 1 /0A'J0ArS:9(x2, x4, At)($;fB)(~2)$,?(B)(~4)) d4x2 d4x4. (6) 

The effects of two classes of interactions (which have been neglected in the treatment 
above) must be considered. Namely (i) interactions between electrons in the detector and 
(ii) interactions between electrons in the beam. Since the states of the detector and 

jf 
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possibly even of the beam are taken to be stationary a large part of (i), and to a lesser 
extent (ii), can be treated by considering an  external self-consistent field produced by the 
electrons, which just adds to the external field of the nuclei and can be treated in the same 
way, The effects of the interactions (ii) will be minimal if the beam is dilute everywhere 
and not of low energy (ie > 100 eV). 

The expression (4) for P(')(At) depends implicitly on the functions Os(r) which in 
general are not plane waves. Because it  is convenient to deal with plane waves outside 
the detector, i t  is necessary to find solutions in the detector which match up with the 
plane waves at the boundary. If the detector can be considered as a potential well for 
this purpose, it is simply a matter of matching plane waves inside the detector with plane 
waves of different momentum outside, but the general problem is more difficult. This 
procedure is unnecessary for photon detectors since. to an excellent approximation, the 
photon does not interact with the electromagnetic field in the detector. 

2.3. Higher-order counting rates and statistics 

In order to get a fully normalized probability distribution for the probability P(n. t ,  , [,)of 
counting n counts in a given time interval, [ t , ,  t,], it is necessary to take the S matrix 
expansion as a non-truncated infinite series. As this is on the whole impractical, other 
approaches or simplifying assumptions have to be made, such as those made by Glauber 
(1964), Kelly and Kleiner (1964), and Rocca (1972) for the photon detection case. Apply- 
ing such assumptions to electron detection gives 

P(n, t , ,  t2 )  = f Jtr d 4 x , . .  . [r d4xm+,L; d4x;.  . . Jt:' d,~;+~-- 1 
m = O  m!n! 

where the spinor indicesj,j' are dependent on i in each of the three groups of products. 
All of these assumptions involve considering only products of the lowest-order 

diagram, in this case the bound M ~ l l e r  scattering diagram, and hence ignoring any 
processes which occur only at higher order. These processes are possibly more important 
for electron detection than photon detection. In both these cases such processes are 
vital for amplifying the effect of the incoming particle, but it is probably a good approxi- 
mation to treat this separately, in the same way that such macroscopic effects as dead 
time are treated (Mehta 1970, Goldanskii et a1 1962, Bedard 1967). I f  any of these 
processes, however, has a time spread which is greater than the period of the beats 
which occur, then these, and hence any interesting statistical properties of the beam, will 
not be revealed. 

3. The sensitivity function 

The expressions ( 7 )  for P(n, t , ,  t,) and (6) for P("(At)  are at least superficially similar to 
the corresponding formulae for photon counting (Kelly and Kleiner 1964), where 
Sg) ( r , ,  r,,  t ,  - t4) can be interpreted as a sensitivity function. If S$)(x2,  x4, At) is to be 
interpreted as such a sensitivity function i t  must possess at least two properties of 
SK! : (i) it must be a function of r,, r,  and t ,  - t ,  only ; and (ii) it must be independent of 
the time of observation At, to  first order. By studying the invariance properties of S$J 
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under translations in time and using an expansion for the vacuum contraction D ( x , ,  x,) 
(Akhieser and Berestetskii 1965, p 515) the two properties can be shown to hold if 

At >> RIC (8 )  

where C is the speed of light and R is the 'range of interaction' where q, / (4mOR) is the 
lowest excitation energy. This restriction does not occur for photons because in the 
photoelectric effect the excited electron is always created at the same time and place as the 
photon is destroyed. 

Now consider the dependence of Sjyl on the spatial coordinates r2  and r,.  and the 
effect of this on the detection of beats in the case where the one-particle solutions @;(r)  in 
the region D are localized, that is, they can be chosen so that each one takes on a non- 
negligible value only inside a finite volume (with a maximum dimension, d ,  say). This 
would be true for instance if the detection system consisted of an array of non-interacting 
'atoms' (ie atoms, molecules or  ions), where @;(r) would then represent the wavefunctions 
for the orbitals of the 'atoms'. From this we have 

( ~ o ~ l ( / , ~ ( D ) ( x l ) l ( / ~ ( D ) ( x 3 ) ~ ~ o )  z 0 unless Ir l  - r 3 )  < d.  

Combining this with (10) gives 

J = 0 unless Ir2 - r41 < R + d  

where J is the integrand of ( 5 ) .  I f  these localized volumes are separated by a distance 
greater than R + d ,  then this corresponds to the case where the detector can be divided 
up into separate 'atoms', which are non-interacting and with which an electron can 
interact only one at a time. This is probably only a fair approximation for solid state 
detectors, but it would appear to be a very good approximation for an ionization type 
detector consisting of an atomic or molecular gas. 

I f  this dimension R + d  is small compared with the electron wavelength, &, (there 
may be physical difficulties in this) then SE4f2 - t,, r 2 ,  r,) may be approximated by 
S:.'(t, -r4, r2)6(r2 -r4) and the first-order detection probability may be written in the 
form 

This is basically similar to  the formula for photon detection derived by such authors as 
Glauber (1964) who implicitly rely on the above considerations. The simplicity of the 
expression (9) for P 1 ) ( A t )  would mak.e it preferable to study this case experimentally, 
but this imposes restrictions on the energy ( E  eV) of the electrons and on the effective size 
of the 'atoms' ( R  + d), which may be difficult to satisfy. Explicitly (for non-relativistic 
electrons), 

R + d  < ;le N 10-9E-1'2. 

Thus for an atom of effective diameter lo-* m the electron energy must be below 
0.01 eV. 

Alternatively consider ;le < R + d .  Dividing P"'(At) into a sum over atoms and 
expanding the operators $f(")(x) in terms of the @;(r) and the time dependent creation 
and annihilation operators 

jaB jc, exp( - io(a)t) 
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yields the following result : 

where 

. .  
volume"' 

Ifthe 'atoms'are identical in type and in their environment then SE) will not depend on m. 
The result (1O)differs from the corresponding expression derived from (9) by a dependence 
on k ,  and k ,  together, quite apart from the general frequency response of the detector. 
This, in general, can be a very strong dependence which will alter the relationships 
between the counting statistics and the line shape, making them much more complicated 
than for the usual photon case. 

6 R + d ,  as the total effective dimension 1 of the 
detector becomes comparable with, or larger than, the wavelength of the beats, then 
these will become averaged out to  an extent which depends critically on the appropriate 
dimension of the detector. If any interesting statistical effects are to be observed, then 
this effective dimension will have to  be constant and uniform to within the beat wave- 
length. For a nearly parallel beam with mean energy E eV and a small energy spread 
AE eV this means 

In either case, I., > R + d  or 

AlAE < 2 x 10-9E'i2. 

For example with a 10 keV beam and a detector with a fluctuation in dimension of 0.02 
mm, the energy spread must be less than 0.01 eV. 

Finally, consider the dependence of the sensitivity function on the spin states of 
both the detector and the incident beam. If we assume that there is no discrimination 
between the spins of the excited (secondary) electrons then it can be shown that ii'Wj;! is 
diagonal in both ii' and j j ' and hence that the corresponding term in the first-order 
detection probability is completely insensitive to  the spin of both beam and detector 
electrons. On the other hand "'WE! is diagonal in i j '  and i'j and hence describes the spin- 
dependent sensitivity of the detector. If electrons in the detector have a preferred spin 
then the beam electrons of the same type of spin are detected with reduced sensitivity. If  
the detector is completely unpolarized then the detector is insensitive to spin. 

(12) 

4. Conclusions 

The formulae for P(n, t , ,  t,) derived in the previous sections provide a general method of 
calculating from a given quantum state the results of experiments designed to exhibit 
the statistical properties of electron beams. Although the formulae appear similar to 
thbse derived for photon beams there are a number of important differences which will be 
of interest for future experiments with electron beams. The relation R + d < ie appears to 
be extremely restrictive because of the shortness of electron wavelengths and the range 
of the Coulomb interaction. It is thus unlikely that the idealization of a point detector 
(which is applicable in photon optics) will be realizable and it would be necessary to 
use the more general expression (equation (7)). The expressions for P(n, ,  t , ,  t 2 )  also 
differ markedly from those for the photon case in that the operators involved ($- and $+)  
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obey anticommutation rather than commutation relations and satisfy the Dirac rather 
than the Klein-Gordan equation. First-order coherence may be defined, following the 
definition for photon coherence, 

The anticommutation relations will forbid the existence of non-trivial fully coherent 
states but g(x,, x2) will still be a measure of the tendency of the beam to interfere with 
itself. However, as the wave equation leads to dispersion due to the electron’s finite 
mass, the correspondence of g with the visibility of fringes in an interference experiment 
will be valid only for stationary and roughly monoenergetic beams. Experiments using 
such beams have been carried out by researchers such as Mollenstedt (Klemperer 1972) 
using an electron interferometer. These experiments reveal only the spread of the 
momenta in the beam and since this is much larger than the minimum spread which 
arises from the restriction on the number of particles per mode imposed by the anti- 
commutation relations, the fermion nature of the electron beam remains unimportant. 
This will be true unless the average number of electrons per coherence volume becomes 
comparable with one in the cavity where the electrons are produced. The dispersion 
provided by the electron mass is vital in explaining non-stationary interference pheno- 
mena in beams which have an energy substructure such as in the effect of Schwarz and 
Hora (Schwarz 1971). 

Second-order (coincidence) experiments, such as that performed by Hanbury Brown 
and Twiss (1957a,b) with photons, have not as yet been performed with electrons, largely 
due to the restriction imposed by the relation (12) and the difficulty of obtaining sufficient 
temporal resolution. When these problems have been overcome it is still unlikely that 
the point detector idealization will hold, forcing a derivation of the coincidence rate to 
use the more general equation (7) for P(n, t , ,  t2). The most obvious feature of the predic- 
tions for the results for such an experiment is a dip to  zero in the coincidence rate as the 
delay time goes to zero, which is a direct consequence of the anticommutation relations. 
As well as revealing such features of the counting statistics which are unique to  fermion 
beams, the results could yield a great deal of information about processes in the electron 
source and in any medium through which the beam passes. 
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